BME Students Win in Professor Charles K. Kao
Student Creativity Awards 2021 [https://www.pckksca.cintec.cuhk.edu.hk/]

<table>
<thead>
<tr>
<th>Award</th>
<th>Project Title</th>
<th>Awardees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champion (Postgraduate Individual)</td>
<td>Extracting Functional Mitochondrial Using Microfluidics Device</td>
<td>RAHMAN Md Habibur (BME PhD Student) and his teammate from Biochemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(WONG Chung Hong Nathaniel)</td>
</tr>
<tr>
<td>Champion & Special Award (Postgraduate Group)</td>
<td>Electromagnetically Actuated Soft-Tethered (EAST) Colonoscope</td>
<td>PAN Tianle Flippy (BME PhD Student) and his teammates from Surgery (LI Yehui, XIN Wenci)</td>
</tr>
<tr>
<td>Second Runner-up (Postgraduate Group)</td>
<td>Highly Dynamic Nanocomposite Hydrogels Self-assembled by Metal Ion-ligand Coordination</td>
<td>YUAN Wei Hao, LAI Chun Him Nathanael, TUNG Lok Him (BME PhD Students) and their teammates from Orthopaedics & Traumatology (YAO Zhi, XU ShunXiang, GUO Jia Xin)</td>
</tr>
</tbody>
</table>

Here is the brief introduction of the award projects:

Champion (Postgraduate Individual)

RAHMAN Md Habibur (BME PhD Student) and his teammate from Biochemistry (WONG Chung Hong Nathaniel)

Project Title:
Extracting Functional Mitochondrial Using Microfluidics Device

Analysis of mitochondria is crucial to understand the mechanism of mitochondrial dysfunction related disease, for example neurogenerative disorders, cardiovascular failure, aging and several types of cancers. Mitochondria will need to be extracted out from the cell before analysis and explore the possibility to develop therapeutic solutions, however, current extraction methods to physically disrupt cell membrane or chemical lysis significantly deteriorate mitochondrial quality. The winning project has demonstrated a microscale cell shredder where we can selectively disrupt the cell membrane, without disrupting the mitochondrial membrane.
Project Title: Electromagnetically Actuated Soft-Tethered (EAST) Colonoscope

The winning project is designed by a team of three PhD students from Department of Surgery (YeHui LI, WenCi XIN) and Department of Biomedical Engineering Zheng Li’s group (TianLe PAN Flippy). The team has designed an Electromagnetically Actuated Soft-Tethered (EAST) colonoscope system for early colorectal cancer (CRC) screening. Traditional CRC screening causes pain to patients and required high execution skill for surgeons. To promote early CRC screening to the public and shorten the learning path for colonoscopy surgeons, this team has developed a safe, effective, efficient, and easy-to-use solution for colonoscopy. By combining electromagnetic technology and soft materials, this device can help relieve pain and lower skill requirements for surgeons. In the next step, we plan to introduce AI technology to help polyp detection and autonomous navigation, thereby enabling rapid colon inspection and reducing the workload of endoscopists.

Champion & Special Award (Postgraduate Group)

PAN Tianle Flippy (BME PhD Student) and his teammates from Surgery (LI Yehui, XIN Wenci)
Second Runner-up (Postgraduate Group)

YUAN Wei Hao, LAI Chun Him Nathanael, TUNG Lok Him (BME PhD Students) and their teammates from Orthopaedics & Traumatology (YAO Zhi, XU ShunXiang, GUO Jia Xin)

Project Title:
Highly Dynamic Nanocomposite Hydrogels Self-assembled by Metal Ion-ligand Coordination

The team demonstrated a generalized approach to fabricate self-assembled nanocomposite hydrogels via the dynamic ligand–metal-ion coordination and studied the effects of different metal ions on the hydrogel properties. Because of the dynamic coordination between BP and metal ions, such nanocomposite hydrogels exhibit remarkable dynamic properties, such as excellent injectability, rapid stress relaxation, efficient ion diffusion, and tunable mechanical properties. Their findings show that the HA-BP-Mg hydrogel can effectively promote axon growth and functional recovery post sciatic nerve injury, thereby giving a promise for the potential translational applications.