Harness the power of light Biomedical applicaions based on optogenetics

BME@CUHK

Magical light?

Harness the power of light Biomedical applicaions based on optogenetics

Control Protein Activity: reveal mechanism and develop therapeutics

The Importance of Temporal and Spatial Coordination

White blood cell chasing bacteria

bacteria

White blood cell

Movie by David Rogers, Vanderbilt University, in the 1950s

Precise regulation of protein activities

Gao, et al. Journal of Neuroscience Research, 2008

BME@CUHK

Conventional methods to regulate protein activities

No spatiotemporal control !

Optogenetics

Optogenetics Application

Light controls the movement of mouse

Light controls the drinking behavior

Karl Deisseroth, Method Of The Year 2010. Nature

Optogenetics Application

Light Controls Individual Cell Migration

Patrick O'Neill, Molecular Biology of the Cell. 2014

Optogenetics: gene therapy

RetroSense Therapeutics

- Gene therapy against *blindness*
 - conferring light sensitivity to eye neurons
 - delivering the ChR2 to retinal ganglion cells
- First clinical trial in human in 2016

Outline

Developing optical control of organelle transport

Developing optical control of signaling pathways

1

organelle transport in cells

Organelle in a chick neuron Goshima et al, J Pharmacol Sci, 114: 168-79 (2010).

Highway traffic

BME@CUHK

Light-induced movement by different motors

Light-induced mitochondria movement **towards cell edge**

Light-induced mitochondria movement **towards cell nucleus**

Duan*, Che* et al. Chem & Bio. 2015

In Vivo application: light-induced transport of synaptic vesicles in *c. elegans*

- light

+ light

BME@CUHK

Duan, et al. In Preparation

Spatial and temporal Control

Of Light-induced Organelle Redistribution

Duan, et al. In Preparation Duan*, Che* et al. Chem & Bio. 2015

Liting Duan

Outline

Developing optical control of **signaling pathways**

Light Control of MAPK Activation:

temporal pattern of activation matters

20

Liting Duan

BME@CUHK

Repeated Light illumination → reversible activation

Continuous Light Activation \rightarrow PC12 neurite growth

BME@CUHK

Zhang, Duan et al. Plos One. 2014

Optogenetic strategies can be developed to control various intracellular activities

Optogenetic control can achieve high specificity, spatial and temporal precision

Optogenetic tools can be further optimized to meet the great demand of optogenetic applications

Future Research

END

duanlt@Stanford.edu Room 410

Welcome any further question !

