Combining Microfluidics and Nanosensors for Future Diagnostics

Megan Yi-Ping Ho 何亦平

Assistant Professor Department of Biomedical Engineering The Chinese University of Hong Kong

Assistant Professor, Interdisciplinary Nanoscience Centre and Department of Molecular Biology & Genetics, Aarhus University, Denmark Postdoc, Biomedical Engineering, Duke University, USA PhD, Mechanical Engineering, The Johns Hopkins University, USA MS, Mechanical Engineering, Tsing-Hua University, Taiwan BS, Mechanical Engineering, Tsing-Hua University, Taiwan

Microfluidics Innovated Bio-applications

Lab-on-a-Chip: Making the Small

Development and Fabrication of Microfluidics

Overview of the Chip

|--|

Molecular Imaging: Reading from the Small

Biosensing via Nanosensors

M. L. Jepsen, C. Harmsen, A. Godbole, V. Nagaraja, B. R Knudsen, Y. P. Ho*, Nanoscale, 8(1): 358-364, 2016

Introduction	Biomarkers	Organelles	3D Culture	Conclusion
--------------	------------	------------	-------------------	------------

Cell/Organelles Manipulation and Analysis: Learning from the Small

Microfluidics based double-emulsion as a new cultivation vessel

Introduction Biomarkers Organelles 3D Cul	lture Conclusion
---	------------------

Towards Future Disease Diagnostics

Combining Microfluidics and DNA Nanosensors

Introduction Biomarkers Organelles 3D Culture Conclusi	on
--	----

Diagnostics of Infectious Diseases

Organelles

3D Culture

Conclusion

Introduction

Biomarkers

Why Activity of DNA Modifying Enzymes?

- Essential for the Organisms
- Intrinsic Amplification

QD-Nanosensor for Rapid Detection of TB

Detection via the cleavage activity

M. L. Jepsen, C. Harmsen, A. Godbole, V. Nagaraja, B. R Knudsen, Y. P. Ho*, Nanoscale, 8(1): 358-364, 2016

Introduction	Biomarkers	Organelles	3D Culture	Conclusion
--------------	------------	------------	------------	------------

Small Droplet, Substantial Improvement

Sample Processing by Droplet Microfluidics

- 20 μL blood or <u>saliva</u> patient sample
- Detection Sensitivity: 0.06 parasite/µL

Improved Detection Sensitivity Enables Malaria Detection in Noninvasive Saliva Samples

Introduction	Biomarkers	Organelles	3D Culture	Conclusion

Detecting Malaria in Saliva for POC

Manual Operation of Droplet Generation and Extraction
 Colorimetric Readout (HRP)

Marianne S. Hede et. al., Scientific Reports 8 (1), 4122, 2018 (collaboration with Zymonostics and Medical Research Center in Gabon)

Introduction	Biomarkers	Organelles	3D Culture	Conclusion

Promotion to the Clinic

Zymonostics®

- Start-up 2013-2017
- Point-of-Care (POC)
 Diagnostics for Malaria

Start-up 2018-

Introduction

 Rapid Diagnostics for Food Pathogens (*E. Coli* and *Salmonella*)

Biomarkers

Feature	vPCR	Traditional method	Rapid method (PCR)
Price per test	€2	€3	€6
Hours to result	8	120	24-30
Targeting	Live bacteria	Live bacteria	Live or dead bacteria
rganelles	3D	Culture	Conclusion

Towards Future Disease Diagnostics

Combining Microfluidics and DNA Nanosensors

Introduction Biomarkers Organelles 3D Culture Conclusi	on
--	----

Importance of Mitochondria

- Mitochondria are the powerhouses of the cells
- Mitochondria make decisions of cell fates:
 - Response to stress
 - ROS signaling
 - > Apoptosis/necrosis
- Defective mitochondria have been linked to:
 - Cancers
 - Premature aging syndromes
 - Diabetes
 - Neurodegenerative disorders

Nature Reviews | Molecular Cell Biology

Ref: Westermann, B. (2010). *Nature Reviews Molecular Cell Biology*, 11(12), 872–884.

Introduction	Biomarkers	Organelles	3D Culture	Conclusion

Isolating Mitochondria based on Inertia

- Completely new concept
- The benefits of microscale sorting:
 - When to-be-sorted organelles are fragile (as opposed to centrifugation)
 - Small amount of precious/clinical samples (ex: cancer stem cells)
- The benefits of sorting by inertia: (v.s. IEF or antibodies-based microchip):
 - No pre-functionalization (ex: antibodies)
 - No external electric field (as required for the IEF)
 - Easy and robust operation (a pump and the chip)

Organelles

Innovations and Practical Significance

- Effective approach to isolate mitochondria from small scale (< 200 μL)of biological crude sample (i.e. patient sample from the clinics)
- Applicable for other sub-cellular organelles
- Comparison with existing mitochondria isolation kits:

		This Study	Thermofisher	Abcam	Qiagen
Working Pr	inciple	Inertial	Differential	Differential	Density
		Microfluidics	Centrifugation	Centrifugatior	n Gradient
Assay Time (P	ost-Lysis)	10 min	40 min	>30 min	>45 min
Required Cel	ls (Total)	$10^2 - 10^4$	2×10 ⁷	4×10 ⁷	5×10 ⁶
Bench Top Av	ailability	Yes	Yes	Yes	Yes
Purity	y	High	High	High	High
Required R Exchan	eagent Ige	Νο	Yes	Yes	Yes
Price Per Isolat	tion (HKD)	20	45	97	296
Introduction	Biomark	ors Org	anelles		Conclusion

Towards Future Disease Diagnostics

Combining Microfluidics and DNA Nanosensors

Introduction Biomarkers Organelles 3D Culture Conclusi	on
--	----

Bridging In Vitro and In Vivo

2D Culture in Petri Dish

- + Standard Assay
- 2D Cell Signaling
- 2D Drug Response

3D Multicellular Spheroids

Animal Model

- + 3D Cell Signaling
- + 3D Response
- Expensive

Existing 3D Culture Models

Scaffold-Based

- Hydrogels
- Inert matrix
- Scaffold-free

http://www.nature.com

www.mdpi.com

			Advantage(s)		Disadva	ntage(s)
	Hanging Drop	SimUnit	ple form spheroid size	•	Labor-inten Difficult to o medium	sive change
	Spinner flask/ suspension	• Sim • Easy	ple / to scale up	•	Heterogene spheroid siz	ous in e
	Micromolded pla	ate • Unif • Higł	form spheroid size n-throughput	•	Delicate skil for spheroic	lls required l culture
	*none of t	the techniques	allows facile addition	on of e	exogenous ECI	M cues
lr	ntroduction	Biomarkers	Organelles	3	D Culture	Conclusion

Challenges on Surface Treatment

Airway Resistance based Surface Treatment

Ma et al., J. of Micromechanics and Microengineering, v. 27 (9): 095014, 2017

	Introduction	Biomarkers	Organelles	3D Culture	Conclusion
--	--------------	------------	------------	-------------------	------------

Surfactant Induced Spheroid Formation

Comparison with Existing Strategies

Ma et al., J. of Micromechanics and Microengineering, v. 27 (9): 095014, 2017

Introduction	Biomarkers	Organelles	3D Culture	Conclusion

Reliable and Consistent Analysis as Each Droplet Serves as an Individual Incubator

Detection of human Topoisomerase I (hTopI) activity

Multifunctional Analytical Platform

Major Contributions:

- New multifunctional platform for spheroid analysis

- Full package analysis and correlation between spheroid formation capability and molecular biological properties

Major Challenges:

- Performance of spheroid traps
- Integration of microfluidics, optics and gel electrophoresis

In vitro Cluster vs. In vivo Tumor?

Biology Endeavor

- Contribution of cancer stem cells to the spheroid formation?
- Effect of drug against stem cell-rich spheroids?

Introduction	Biomarkers	Organelles	3D Culture	Conclusion
Introduction	Diomarkers	Organelles	SD Culture	

Organoids as a Drug Screening Model

- Spheroids is referred to as organoids, when tissue-like phenotype is observed;
- Organoids recapitulate tissue architectures and functions *in vitro* → understand the biology and evaluate the drug efficacy

Access provided by The Chinese Unive	ersity of Hong Kong
Altmetric: 29	More detail »

The ability to prod stem cells into three-dimensional tissue models makes for a powerful way to study human biology. But these exciting tools are still works in progress.

Biomarkers

Introduction

RESEARCH

ORGANOIDS

Patient-derived organoids model treatment response of metastatic gastrointestinal cancers

- 100% sensitivity;
- 93% specificity;

Organelles

- 88% positive predictive;
- 100% negative predictive value in forecasting response to targeted agents or chemotherapy in patients

3D Culture

G. Vlachogiannis et al., Science, 2018, 359: 920

Conclusion

Interested in Joining Us

Students with strong background in engineering, material science, medical or biological science are welcome.

Megan Yi-Ping Ho (ypho@cuhk.edu.hk) Office: Room 208, Ho Sin Hang Engineering Building

Phone: 3943-4340 Mobile: 9092-1866 WeChat: ypho13 Website: <u>www.bme.cuhk.edu.hk/ypho/</u>

See you at the Lab Tour (G20)

